3-1 Videos Guide

3-1a

Exercise:

Calculate, to four decimal places, the first ten terms of the sequence and use them to plot the graph of the sequence by hand. Does the sequence appear to have a limit? If so, calculate it. If not, explain why.

- $a_{n}=2+\frac{(-1)^{n}}{n}$

Theorem (statement):

- If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Exercise:

- $a_{n}=1+\frac{10^{n}}{9^{n}}$

3-1b

Exercises:

Determine whether the sequence converges or diverges. If it converges, find the limit.

- $a_{n}=\frac{3+5 n^{2}}{1+n}$
- $a_{n}=\frac{4^{n}}{1+9^{n}}$
- $a_{n}=e^{2 n /(n+2)}$

Theorems (statement):

- If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when n is an integer, then $\lim _{x \rightarrow \infty} a_{n}=L$.
- If $\lim _{x \rightarrow \infty} a_{n}=L$ and the function f is continuous at L, then $\lim _{x \rightarrow \infty} f\left(a_{n}\right)=f(L)$.

3-1c

Exercises:

Determine whether the sequence converges or diverges. If it converges, find the limit.

- $\left\{\frac{\ln n}{\ln 2 n}\right\}$
- $\frac{a_{n}(-3)^{n}}{n!}$

3-1d
Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?

- $a_{n}=\frac{1-n}{2+n}$

Theorem (statement):

- Monotonic Sequence Theorem: Every bounded, monotonic sequence is convergent.

3-1e
Exercise:

- Show that the sequence defined by

$$
a_{1}=2, \quad a_{n+1}=\frac{1}{3-a_{n}}
$$

satisfies $0 \leq a_{n} \leq 2$ and is decreasing. Deduce that the sequence is convergent and find its limit.

